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& McKean-Vlasov SDEs and phase transitions
& Existence of stationary distribution for DDSDEs

& Non-uniqueness

& S.-Q. Zhang, Existence and non-uniqueness of stationary distributions for
distribution dependent SDEs, Electron. J. Probab. 28 (2023), article no. 93,
1-34.

& Some recent results



McKean-Vlasov SDEs

& The empirical measure of the position of N particles {Xi} Y,

1 N
y = NZ5X;"

the particles { X1}, satisfy the mteractlon diffusions:

dxi = Zb (XN XNAt 4+ cd WE, i N

7...7 o

where { Wi} are mdependent Brownian motions on R
& The convergence of ;¥ as N — +oc in weak topology of Z2(R%)
(probability measures on R?), is called “propagation of chaos”

which was introduced by Kac ! inspired by the work of Boltzmann.

& M. Kac, Foundations of kinetic theory, in Proceedings of the Third
Berkeley Symposium on Mathematical Statistics and Probability, 1954-1955,
Vol. Ill, University of California Press, Berkeley and Los Angeles, 1956, pp.
171-197.



& McKean 2 prove that for b(z, y) = F(z — y) for some Lipschitz
function F, Y convergence in law to some probability measure 1,
on RY, and p(dz) = py(z)dz satisfies (called McKean-Vlasov

equatioin)
o? .
Oy = 7Apt — div (ptV (/d F(- — y),ut(dy)>) , t>0.
R,

& A R%value nonlinear process on a filtered probability space
(Q, F0,{F:}>0,P) with a B.M. { W;}4>¢ was also introduced:

X = X0—|—// y)Lx (dy)ds+ oW, t>0

Xp is some R? r.v. and Zx, is the law of X under P. Moreover,
Zx, satisfies the parabolic PDE of ;.

2& H. P. McKean, Jr., A class of Markov processes associated with nonlinear
parabolic equations, Proc. Natl. Acad. Sci. USA, 56 (1966), pp. 1907-1911.

& H. P. McKean, Jr., Propagation of Chaos for a Class of Nonlinear
Parabolic Equations, in Stochastic Differential Equations (Lecture Series in
Differential Equations, Session 7, Catholic University, 1967), Air Force Office
Sci. Res., Arlington, VA, 1967, pp. 41-57.



Phase transitions

& For d=1 and b(z,y) = —2% + 2 — a(x — y), Dawson proved
that this system has phase transitions 3: there is 0. > 0 such that
for 0 < o < o, there exist three stationary distributions;

for ¢ > o, there exists only one stationary distribution.
& The following PDE has three solution if o € (0,0.):
0= U;Ap(w) —div (p(x) (—xS tr—a /Rd(x— y)p(y)dy)>.
p>0, / p(x)dz = 1.

Rd
0 is not a simple eigenvalue.

1
) E < e < /2. Fix 0. Then the phase transition occurs when
Q@

« is large and does not occur when « is small.

3& D. A. Dawson, Critical dynamics and fluctuations for a mean-field model
of cooperative behavior. J. Stat. Phys. 31(1), 29-85, 1983.



& Set b(z,y) = =V V(z) — VF(z—y),
V': the confining potential F': the interaction potential
Stationary distributions are of an explicit formulation:
e {-Z(V@+Frp@)}
Jreexp {—% (V(2) + F* p(z)) } dz

Dawson's V(z) = % — %: double-well landscape
F(z) = §
0.6
0.4

—15 1/0( \\Kl hs
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& For polynomial potentials V (deg V' > 4) and F (even
polynomial funciton), existence of several stationary distributions
investigated by combining the explicit formulation with free energy
functional:

02

1
&V () = = Bnt(plv,) + 5 u(F * p)

where 1y, (dz) = Zyexp{—20=2V(z)}dxz (a probability measure)
Ent(u|py,) is the classical entropy. *

*& J. Tugaut, Convergence to the equilibria for self-stabilizing processes in
double well landscape, Ann. Probab., 41 (3) (2013), pp. 1427-1460

& J. Tugaut, Phase transitions of McKean-Vlasov processes in double-wells
landscape, Stochastics, 86 (2) (2014), pp. 257-284

& Duong, M.H., Tugaut, J., Stationary solutions of the
Vlasov-Fokker-Planck equation: Existence, characterization and phase
transition, Appl. Math. Lett., 52, 38-45, (2016)



& Discrete model, there exist analogues called nonlinear master
equations to describe nonlinear pure jump Markov processes. The
phase transition is also studied, e.g. the second Schlégl model.®

& V=0 and R is replaced by the Torus T%, phase transitions are
studied for the McKean-Vlasov equation by using the bifurcation

Theory and the Fourier coefficients of the interaction potential F.°
Their results indicated that non-uniqueness of i corresponds to the

multiplicity of the eigenvalue 0 for the nonlinear elliptic operator

o2 .
5 Ap = div (u(b)p) = 0.

5& Feng, S. and Zheng, X. G., Solutions of a class of non-linear Master
equations, Stoch. Proc. Appl. 43,(1992), 65-84. See also Section 15.4 in
Chen, M.-F., From Markov Chains to Non-Equilibrium Particle Systems, (2nd
Ed.), World Scientific, 2004.

5& Carrillo, J.A., Gvalani, R.S., Pavliotis, G.A. and A. Schlichting,
Long-Time Behaviour and Phase Transitions for the Mckean-Vlasov Equation
on the Torus. Arch Rational Mech Anal 235, 635-690 (2020).



For distribution dependent SDE(DDSDE) on R¢
dXt = b(Xt,gXt)dt-f- O'(Xt,gxt)d Wt (1)

& Well-posedness, ... of DDSDEs has been intensively studied. *
& The existence and uniqueness of the invariant probability
measures have been investigated.®
& Stationary distribution (SD): u € & so that for Lx, = u, there
is a solution X; with Ly, = p for all t > 0.

& Criteria on the existence of SDs for DDSDEs.

& How does the phase transition occur ?

& F-Y. Wang and his coauthors, X. Zhang and his coauthors, L. Wu and
his coauthors, and many other scholars...

8&% F.-Y. Wang, Exponential Ergodicity for Fully Non-Dissipative
McKean-Vlasov SDEs, arXiv: 2101.12562.

& W. Liu, L. Wu and C. Zhang, Long-time behaviors of mean-field
interaction particle system related to McKean-Vlasov equations,Comm. Math.
Phys., 387 (2021), 179-214.



Existence

Freezing Zx, = 1
dXY = b(X¥, p)dt+ o (X, w)d W,
If X} is ergodicity, we have a mapping:

T : > T, (the unique invariant probability measure of X))

& The fixed points of 7 are SD for X;.
& We use Schauder’s fixed point theorem:
A compact mapping in a nonempty, closed and convex subset

of a Banach space has a fixed point.

For r>0,M> 0

P i={pe 2| |lullr = (u(] - )7 < o0}
Py ={pe 2| |plr< M}

Il - || the operator norm, || - || gs the Hilbert-Schmidt norm.



& (H1) There exist constants r; > 0,12 > 71,713 >0, C; > 0, and
nonnegative Cy, C3 such that for any € Z21+m

2(b(=, ), @) + (1 + 12 — r) o (z, )| g < —Culal ™™ + Gy + Csllull,, -
& (H2) For every n € N and pu € 221172, there is K,, > 0 s.t.
16(z, ) — 0(y, )| + llo (2, ) — o (y, )l s < Knlz— g, |2 V |y < 7.
There is a locally bounded function Cy : [0,400) — [0, +00) s.t.

|b(z, w)] < Calllpllien,) (A +]2™), z€RY, pe P17
When 7, < 1, we also assume that for any p € &2+

2
SUPzcRrd 7”?3‘3’;)2'1{{5 < +o0.
& (H3) Vn>1,M >0, and gy, € 23 "™ with i, = p, there is

lim _sup (|b(z, pr) = b(2; pim)| + lo(2; 1) = (2, ppm)[| m5) = 0.



Existence: regular coefficients

Theorem (Z. 2023 EJP. )
Assume (H1)-(H3) and that o is non-degenerate on R% x 921472

o(z, p)o*(z,p) >0, z€ RY e P12,

Ifro >0, 3 <1+, and Cy > C5 when r3 =1+ ry, then (1)

has a stationary distribution.

.

& For r3 < 1+ r, we only require that C} > 0.
& Example: Let d=1, a1, a2 € R with ajas <0, 8 > 0 and
a > 0. o is positive and bounded on R x &2, locally Lipschitz as in
(H2) and satisfies and (H3):
dX; = —B(X; — a1) Xy(X; — ag)dt — a/(Xt —y)ZLx,(dy)dt
R
aF O'(Xt, gXt)d Wt.



Existence: singular coefficients

We consider
dX; = b()(Xt, .iﬂxt)dt + b (Xt7 .iﬂxt)dt aF U(Xt, gxt)d W. (2)

The drift term by is regular, and b; is singular satisfying
& (H4) 3 p1 > d so that sup,c p1+n |01, )| 7, < 00.
For every n>1 and M > 1,

lim — [[(5a(, ) = 01 (5 )1 <mllze = 0.

& (H5) Y € 2172 g(-, i) is uniformly continuous, and
Vo(-,u) € LP2 for some py > d, and I\, Ag > 0 s.t.

A < (00%)(z, 1) < Ao, € RY e P,

L= {fe L, | Az = sup. Ix (52) Ml < oo}
with x € C%O(Rd) and 1[|$|S1] <x< I[MSQ]'



Theorem (Z. 2023 EJP. )
Assume that by satisfies (H1)-(H3) (set o = 0 there) and satisfies

a stronger condition : there are positive constants Cs, Cg such that

371

|bo(2, )| < C5(1+ [al™) + Collulli iy, z€RY pe 2172,

where 1y, 12, 13 are constants from (H1). Assume that by satisfies
(H4), and o satisfies (H3) (set b = 0 there) and (H5). If 5 > 0,
rs <1+, and C; > C3 when r3 =1+ 1, then (2) has a

stationary distribution.

We use the Zvonkin transform and local L? in

& Xia, P., Xie, L., Zhang, X. and Zhao, G.: L(LP)-theory of stochastic
differential equations, Stoch. Proc. Appl., 130, (2020), 5188-5211.

& Xie, L. and Zhang, X.: Ergodicity of stochastic differential equations with
jumps and singular coefficients, AIHP, 56, (2020), 175-229.



Existence: gradient form drift

Consider T has the following form

exp{=Vo(2) = V(z,p)}
Jraexp{—Vo(z) — V(z, p)}dz

771/:

Let
a:R*x #— R?»RY

be a measurable function, and let a(-, 1) = (a4(-, 1)) 1<ij<a be
weakly differentiable. Consider the following differential operator:

Lyg = div(a(u)Vyg) — (a(p)V (Vo + V(w)), Vg),
which associates with

dX: = —a(Xy, Zx,)V(Vo(-) + V(-, Zx,)) (X)dt
+ div(a(, L)) (X)dt + /2a(Xy, L, )d Wy



e V(z)

Notation: ji(dz) := T e 7@ dz

dz, Il - || w, weight TV norm.
Assumption (D)
& (D1) e~ € L', 3V so that e Ve L' and 3p > dand ¢> 1
such that Vp, V € W;y’ ={fe Wl | Vfe L (@)}
& (D2) 3Wy > 1 such that Wy € L*(jz) and

V(p) € WP, we Pw,.
There exist nonnegative functions Fy, Fy, Fy, F53 s.t. Fy € LS°
Fy € L9(p) (LY., F1, F3 are increasing on [0, 4+00) with

lim Fi(r) =0, and

r—0t

loc!

| V(z, ) = V(z,v)| < Fo(@) Fr(llp — vllw),
[V(z, )| < C(Fo() + 1),
IV V(z, p)| < Fa(2) F3(||ullwo), 1, v € Py
& (D3) There is F; > 0, increasing on [0, +00) s.t.
— Vo(z) + BFo(7) < —V(z) + F4(B), B > 0.



Assumption (W)
& (W1) 3W > 1 such that lim W(z) = 400 and

|z| =400
sup Wo() < 00, lim Wo() = 0.
scrd W(2) el —++00 W(z)
& (W2) 30, € W?Oi and strictly increasing functions G7, G5 on

[0,400) such that Gs is convex, and
: Gi(r)
r—+o00 Ga(T)

LW < Gi([lpllw) — G2(W), pe Pw.

<1,

Theorem (Z. 2023 in progress)

Assume (H) and Fy € L'(Wop), a(p) € Wit 0 L% () for all

1€ Pw, and some p1 > d, qi € [, +00], and (W) holds for

2 .
Wi € WP and py > qlq_q(lqiql) Vv plpil. Then T has a fixed

point with density in W;jg NL>®N LY Wq).




Non-uniqueness: locally existence

For a € RY, define probability measure 114 @ po(f) = pu(f(- — a)).
For Kk >0, and 0 < v < 1 + 1y,

Pl ={n € P | |lnally < &}

Theorem (Z. 2023 EJP.)

Suppose that the coefficients b, o satisfy assumptions of the first

theorem or b = by + b1, o satisfy assumptions of the second

theorem. Assume that there are a € R, v € (0,1 + 1), k > 0 and

g on [0, 4+00)? such that g(-, w) is continuous and convex for each

wy > 0, and

2b(e+ a, 1), 3) + llo(z+ a, w)ll%s < —gllal, llnall,), u € 247,
g, wy) >0, w>k,0< w <k,

then (1) has a SD p € 2, ..




If there exist ai, ay € R and k < M such that the above

assumptions hold, then (1) has two different stationary
probabilities p1y € P4, 1o, 2 € Py sc-

& Set b(z,u) = =V V(z) — VF* p(x). We can give a sufficient
condition to find SDs around the critical point of V.

& Example:
Let d =1,
dXt = —,B(Xt — (ll)Xt(Xt — ag)dt — / (Xt — y)gxt(dy)dt
R

I h(Xt, jxt)dt aF O'(Xt, th)d Wt,

«, 3, a1, ag satisfy all the conditions of the first example, o satisfies
(H5) and uniformly nondegenerate, and h is a bounded measurable
function satisfying (H4). There is x € (0, (Jai| A |az])/2) such that

lol1Z + [hllook < 28K%(k — a1 — a2])(k — |a1] A ]ag]).




Non-uniqueness: bifurcation

Let as € (0,+00). For a € [0,as), let 0 < 0 € C*([0, as)), and

Fo pa) = exp {—0(a) Vo(2) — a (I{Z((:rp,pj)x) + Jpa K(z, y)p(y)dy) }

We first reformulate this problem w.r.t. a reference probability

measure. Let V be a measurable function with e~V € i
o=e de//evda:.

Reformulate 7 into the following form

exp { —0(a) Vo — a (V(ppi) + [pa K(, y)p(y)ii(dy)) + V}
Z(p, cx) '

& give a sufficient condition to determine the changing of the

T (x5 p,0) =

number of fixed points of 7 (-, ) as « crossing some ag € (0, o).



Bifurcation theorem

For a parameter-dependent problems on Banach space X x R:
F(z,a) = 0, with (0,a),« € V are trivial solutions

where F e C(Ux V;X) and 0 € UC X, VC R are open such that
VF(0,a) exists and VF(0,-) € C(V; L(X)).

Definition

Let A1, --- , Ay be all the negative eigenvalues in the 0-group of
V F(0,«) with algebraic multiplicities my, - -- , my, respectively.
Denote

o<(@) = (~)Z=m,

and set Zle m; =0 if k= 0. If VF(0,«) is an isomorphism on X
for a € (g — 9, ap) N (g, g + 0) with some § > 0 and o ()
changes at o = «v, then VF(0, ) has an odd crossing number at
a = Q.




Theorem (Krasnosel'skii's Bifurcation Theorem)

If 0 is an isolated eigenvalue of finite algebraic multiplicity of
VE(0,ap) and VF(0,«) has an odd crossing number at o = a,
then (0, ) is a bifurcation point for F(z,a) =0, i.e. (0,ap) is a
cluster point of nontrivial solutions (z,a) € Ux V,z# 0 of
F(z,a) = 0.

& For a fixed point of 7 (-, «), saying pafi, let

O(p,a) =p=T(pa),  B(p,a) =p;'@((p+ 1)pa, ).

Then (0, ) is a trivial solution of ®.

& We give a bifurcation analysis for & = 0.

& H. Kielhofer, Bifurcation Theory: An Introduction with Applications to
Partial Differential Equations, Second Edition, New-York, Springer, 2014.



& (A1) sup,e ;e Vo € [ for any closed, bounded interval J.
eVel'and Vi : R = R, V3 :R?x R?— R such that

Vs, pi) = V(a) + /R Valw 9p(A(dy), @€ R p € I (),

/ <|VO|T+‘V1’T+ eB”VQ(x")"LQ(ﬂ)) ﬁ(dz) <400, 7>1,8>0,
Rd
and 3Cj on [0, +00) is increasing and positive function so that

—0Vo(z) + 81| Vi(2)| + Ball Va(@, )|l 2
< =V(z) + Co(0, 81, B2), 0 € Ry, 1 € [0, a00), B2 > 0.

Ry : the range of 6(-)



Mofi= = ol 1€ D), Vaafi= [ Vol nflo)haldy)

Lemma (local uniqueness)

Assume (A1). If there is ag € [0, ano) such that T with K =0 has
a fixed point py, € L?(f1), and I+ 0Ty V2,00 Taq IS invertible on
L?(ftay,), then there is § > 0 such that for each o € Ju, 5, there

exists a unique p, € L?(fi) such that ®(p,, ) =0, and
Jag.s D > pq is continuously differentiable in L*(ji) with

sup || pallec < +o0,
aEJaO’(;

sup |0y logpa| € L' (1), 7> 1,

QEJQO,J

and for any r > 1, pa, Oapa, On l0g po, are continuous of o from
Jag,s to L"(11).




& (A2) There are measurable functions K; € L?(ji) and
K5 : R4 x R% — R so that

K(z,y) = Ki(y) + Ka(z, y), z,y € R,
and for any 8 > 0,
[ exp {B1Ka(a. e da) < .
& (A3) For almost z € R¢,
| Kalepualaz) =0.

& (A4) There are 1,2 > 2 such that || V2\|L%L;1 and ||K2||L%L32
are f|n|te (H VQHL%L'Jl = fRd H VQ(‘a y)| z;(ﬁ)ﬂ(dy))



Let P(ap) be the eigenprojection of —ama, (V2,00 + K2,00)Tag

associated to the eigenvalue 1:

1

ool =55 Jr

(_04077040 (V27oco + K27040)7T0to - n)ildn’

where i = v/—1, and T" is some simple and closed curve enclosing 1
but no other eigenvalue. Denote

Ho = P(ao) L (kao),  Hi = (I— P(a0)) L(ttap)-
Hy is finite dimensional. Denote

;10 = —P(Odo)aoﬂ'ao <V27a0+K2,a0>7Ta0 e MO = P(OCO)MBQ 10g pa, 2
0

0

A and My are matrices on H.



Theorem (Z. 2023 in progress)
Assume (A1), (A2) and (A4). Let ag € [0, aoo) Such that T with
K =0 has a fixed point py, € L?(fi) and I+ A0Tan V2,00 Tag 1S

invertible on L*(jia,), and let the family {patacs,, s be given by

the previous lemma. Suppose that K5 and the probability measure

family {ia}ac,, 5 satisfy (A3).
& If 0 is an eigenvalue of I+ agma,(Va,ao + Ko.a0)Tag: 1y + M,

is invertible on Ho and the algebraic multiplicity of the eigenvalue
0 of (I, + Mp)~! (2151 — IHO) is odd, then (0, o) is a
bifurcation point for ® = 0, i.e. in any neighbourhood of (0, o),
there is more than one solution of ® = 0.

& In particular, if 0 is a semisimple eigenvalue of
I+ a0y (Va,ag + Ko,ao) T with odd multiplicity and Ty, + My
is invertible on Ho, then (0, a) is a bifurcation point for & = 0.




Back to Dawson'’s example

Fpa) = exp {—% (xff - §> ~ 2 Jela— y)2u(dy)}

Z(p, B, 0)
exp{~% (4 -2) - & + B fpun(dy) }
Z(p, B,0)
Here, Vo(z) = %4 — %, Vi(z) = %; Vo =0, Ka(z,9) = ay,
Ki(y) =%, a=%, 0(a) = 5,

By — ~Z(p1, a)exp {—H(Q) (%4 - %) B aé}

& 0 is a semisimple eigenvalue of I+ aoma, (Va,0, + K2.a0)Ta, With
odd multiplicity i.f.f. o [, 2% pa,(2)dz = 1. (Dawson’s criteria)
& Iy, + My is invertible on H, i.f.f.

07 145 (=S o000+ ( Po)”) (= § + 5 + 7).

2a0



Thank You!



